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Non-linear wave modulation near the marginal state 
of instability 

E J Parkes 
Department of Mathematics, University of Strathclyde, Glasgow G1 l X H ,  U K  

Received 30 October 1987 

Abstract. The slow-amplitude modulation of a weakly non-linear purely dispersive 
quasimonochromatic wave solution to a certain system of quasilinear partial differential 
equations is investigated. It  is shown that, near the marginal state of modulational 
instability, and provided the system satisfies certain conditions, the complex amplitude of 
the wave is governed by a modified form of the non-linear Schrodinger equation that 
involves higher-order non-linearities. 

1. Introduction 

Many purely dispersive physical systems are described by the class of quasilinear 
partial differential equations 

A( U)d U / d t  + B( U)a U / a x  + C( U )  = 0 (1.1) 

where t and x are time and space coordinates, respectively, U = ( U , )  is an n-component 
column vector function of t and x, and the n x n matrices A = ( a,,), B = ( b,,) and the 
n-component column vector C = (c,) are functions of the U,, all these quantities being 
real. Inoue and Matsumoto (1974) have shown that under certain circumstances the 
slow-amplitude modulation of a weakly non-linear quasimonochromatic (carrier) wave 
solution to (1.1) is governed by the non-linear Schrodinger (NS) equation 

In (1.2), T~ = E 2 t ,  6,  = E ( X  - Vgt), cp, V, and K are the complex amplitude, group velocity 
and wavenumber of the carrier wave, respectively, p = $ d Vg/dK and q are real functions 
of K, and E is a small parameter that characterises the modulation and the non-linearity. 

The criterion for the modulational instability of the carrier is p q  < 0 (Taniuti and 
Yajima 1969). For many physical systems p q  has just one real zero at some critical 
wavenumber K ,  and so the carrier is marginally modulationally unstable at K = K , .  

Inoue and Matsumoto (1974) implicitly assumed that p and q were 0 ( 1 )  quantities 
and so their derivation of (1.2) is not valid when K is near K , .  The purpose of this 
paper is to find the governing equation for cp that replaces (1.2) near the marginal state. 

Hasimoto and Ono (1972) considered the modulation of Stokes waves (i.e. gravity 
waves on water of uniform depth) away from the marginal state and obtained (1.2) 
as the governing equation for cp. Kakutani and Michihiro (1983) reconsidered this 
problem and argued that near the marginal state a different ordering should be used 
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2534 E J Parkes 

to intensify the effect of the non-linearity. We have discussed this argument in a 
previous paper (Parkes 1987a). By assuming that the effect of the non-linearity is of 
O(E"* )  instead of O ( E ) ,  Kakutani and Michihiro derived a governing equation for cp 
near the marginal state of the form 

where q l (  = q / E ) ,  q2 ,  q3 and q4 are O( 1) real functions of K ,  which is assumed to be 
such that K - K ,  is of O( E ) .  We shall refer to (1.3) as the modified non-linear Schrodinger 
(MNS)  equation. This was also derived formally by Parkes (1987a) for modulations 
near the marginal state for an arbitrary system in which a scalar-dependent variable 
U satisfies an equation of the form 2 u  = N, where 2 is a linear operator involving the 
differential operators a l a t  and alax, and N represents all the non-linear terms. In 
Parkes (1987b) we considered a particular example of ( l . l ) ,  namely a 4 x 4  system 
describing ion acoustic wave propagation in a plasma, and, using Kakutani and 
Michihiro's ordering, we obtained (1.3) again for modulations near the marginal state. 

In this paper we apply the methodology developed in Parkes (1987b) to the general 
system (1.1). We show that, under certain restrictions, the MNS equation is the governing 
equation for cp near the marginal state. In § 2 we show how to apply the derivative 
expansion perturbation procedure to (1.1) and describe the method for solving the 
resulting hierarchy of equations. In § 3 we give the details of the solution and derive 
the conditions that A, B and C have to satisfy in order that cp is governed by the MNS 

equation. In § 4 we compare our results with those of Inoue and Matsumoto (1974) 
for modulations away from the marginal state. 

2. Method of solution 

The unperturbed state of the system described by (1.1) corresponds to the constant 
solution U = U''' for which C( U''') = 0. Using this it is convenient to rewrite (1.1) 
in the form 

L U = M  (2.1) 

where 

L = Ad/at + Bdldx + V CO 

M = - C + ( V  CO) U 

(2.2) 

(2.3) 

and VC, is defined by (VC,), =ac,/au, evaluated at U = U'''. 

by introducing the extended set of independent variables 

to= t xo=x 7, = E ' t  .$ = E I ( X  - V,t) i = 1 , 2 , . , . ,  N 

where E is a small parameter characterising the slow modulation. As in Parkes 
(1987a, b)  it is sufficient to take N = 2  here. Thus defined to,  x, are the variables 
appropriate to the 'fast' oscillations of the carrier, and 71, 5,, T ~ ,  & are 'slow' variables 
appropriate to the slow modulations in a reference frame moving with the group 

The derivative expansion procedure (Kawahara 1973) is applied to the system (2.1) 
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velocity V,. (An explicit expression for V, is given later.) The time and space derivatives 
in (2.2) may now be expressed as the derivative expansions 

a a -- = - w 2 +  E ($- v&) + E 2  (;- v, ;) 
a t  

(2.4) 

where e( = K X ~ - U ~ ~ ) ,  w and K are, to lowest order, the phase, angular frequency and 
wavenumber of the fast oscillations. 

Inoue and Matsumoto (1974) considered the non-marginal state by assuming that 
the non-linearity is of O ( E ) .  In order to investigate the behaviour of the slow modula- 
tions near marginal instability we intensify the non-linear effects by assuming the 
non-linearity to be of O ( E ’ / ~ ) ,  as in Kakutani and Michihiro (1983). As in Parkes 
(1987b) we write U as 

6 

U= u(O)+ &i/2u(ij(e, 71, T 2 ,  t2)+0(E7/2) .  (2.5) 
i = l  

Substitution of (2.4), (2.5) and the Taylor series expansions for A, B and C about 
U =  U(’) (given in appendix 1)  into (2.2) and (2.3) gives 

5 

L =  E i / 2 ~ i + ~ ( E 3 )  
i = O  

where 

a 
Li = (-@Ai + K B ~ )  (Bi-2j  - V,Ai-,) - 

and 

t i  i even 
‘={;( i - l )  i odd. 

The A,, Bi and Mi are given in appendix 1 .  Substituting (2.5)-(2.7) into (2.1) and 
equating like powers of E, we obtain the hierarchy of equations 

1=1 
(2.8) 

For I = 1 we assume that the solution to (2.8) is the quasimonochromatic wave 

U ( ’ j = ( p ( ? , , t 1 ,  7 2 ,  t 2 ) K  exp( ie )+cc  (2.9) 

where (p is a complex scalar function and K is a constant column vector. Here, and 
subsequently, cc is used to denote the complex conjugate of all the preceding terms. 
Substituting (2.9) into (2.8) we deduce that there is a non-trivial solution for K provided 
w and K satisfy 

g ( w ,  K )  = det{D,(w, K ) }  = o  (2.10) 
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where 

Do(w, K )  = -iwAo+iKBO+VCo= (d,). 

Usually it is found that rank {Do(w, K ) }  = n - 1. Equation (2.10) is the linear dispersion 
relation which, for purely dispersive waves, is satisfied by real values of w = U ( K )  and 
K.  We shall assume that 9 ( j w , j ~ )  # 0 f o r j  = 2,3, .  . . , so that the inverse of the matrix 
D o ( j w , j K )  exists for these values of j .  

If D,j is the cofactor of d, then for a given r t  
d..D ?I ri . = 0 i =  1,. . . , n (2.11) 

since for i = r the left-hand side is just det{Do(o, K ) }  which is zero by (2.10), while 
for other values of i the left-hand side is an alien cofactor expansion and so is identically 
zero. Similarly, for a given s 

d,D, = 0 j = 1, . . . , n. (2.12) 

As K satisfies d,Kj = 0, i = 1,. . . , n, we may choose Ki = Dri, where r is selected so 
that K is not the zero vector. In appendix 2 equations (2.11) and (2.12) are used in 
the derivation of an expression for the group velocity V,- dw/dK, namely (A2.3). For 
a purely dispersive system this expression is real. 

Explicit solutions to (2.8) for 1 > 1 are given in P 3. Here we summarise the method 
of solution and obtain non-secular conditions. We find that, for each 1 > 1, (2.8) may 
be written 

(2.13) 

where the fii'), k = 0, . . . , 1, are independent of 8 and are determined by the solutions 
U'", i = 1, .  . . , 1 - 1, to previous equations in the hierarchy. As we require solutions 
involving no secular terms we assume a solution to (2.13) of the form 

I 
U'" = Ub') + U',') exp( i k8) + cc 

( k = l  

where the U f ) ,  k = 0, . . . , I ,  are independent of 8. This assumption imposes up to two 
conditions at each order, namely (2.15) and (2.18) below, which may be regarded as 
'non-secular conditions'. The Uk" are determined as follows. 

The vector Ub" satisfies Lo Ub" = f ib ' ) ,  from which we obtain 

(V CO) U p  = e(/) 0 .  (2.14) 

Suppose rank {VC,} = m. If m = n, VCo is non-singular and the solution to (2.14) is 
simply Ub"= (VC0)-' fii'). However, for m < n, VCo is singular and (2.14) has a 
solution only if 

rank{(VCo, f ib ' ) )}  = rank{VCo} (2.15) 

where (VCo, fib") is the n x ( n  + 1) augmented matrix whose ( n  + 1)th column consists 
of the components of f ib ' ) .  The condition (2.15) can be stated more conveniently as 
follows. We may re-order the equations in the system (2.1) and re-order the components 
of U so that (VCo) ,=O,  i = l ,  ..., n-m; j = 1 ,  ..., n, and that the m x m  matrix 

t Here and elsewhere, except when indicated otherwise, the summation convention is used with the repeated 
subscript running from 1 to n. The summation convention will not apply where the repeated subscript is r 
or s. 



Marginal state of modulational instability 2537 

(VCo)f,, i = n - m + 1,.  . . , n;  j = n - m + 1, .  . . , n, is non-singular. Then (2.15) implies 
that 

u’b’,’ = 0 i =  1, .  . ., n - m  (2.16) 

where u’b’,’ is the ith component of fib”. The solution to (2.14) may now be written 
i =  l , . .  . , n - m  

i = n - m + 1, .  . . , n 
ug’= n n - m  

(vC,),’$j:’+ c eJj” I”‘) J =  n--m+ 1 J = l  

i = n - m + l ,  ..., n ; j = l ,  . . . ,  n - m  

where 

e = -  ( v c O ) , ’ ( v c O ) k ,  
k = n - m + l  

and the A:”, i = 1, .  . . , n - m, are arbitrary real functions of the slow variables. 
The vector U‘,” satisfies LOU\” exp(i8) = fir/’ exp(i8), from which we obtain 

D o ( W ,  K ) U ( I ’ ) =  fir‘’. (2.17) 
Equation (2.17) has a solution only if 

(2.18) 

This condition can be stated more conveniently as follows. Writing (2.17) as d,u‘,:’ = u‘!’,’, 
and choosing s so that the vector with components D,,, i = 1 , .  . . , n, is not the zero 
vector, we have D,,d,u~:’=D,,u’\‘,’. Then, on using (2.12), we obtain a condition 
equivalent to (2.18), namely 

Dgszi{{’ = 0. (2.19) 
The solution to (2.17) consists of a particular solution plus a solution to the 
homogeneous version of (2.17). We shall ignore the latter as it may be absorbed into 
(2.9) by a suitable redefinition of cp. 

The vectors Ui”, k = 2 , . . . , 1, satisfy LoUi” exp(ik8) = fii‘) exp(ik8), from which 
we obtain Do(kw, k ~ )  U t ’ =  fit’. The solution is simply Ui” = [Do(kw, k ~ ) ] - ’ f i i ’ ) .  

rank{(D,(w, K ) ,  fi!”} = rank{D,(w, K ) } .  

3. Derivation of the modified non-linear Schrodinger equation 

Following Inoue and Matsumoto (1974) we classify the system (1.1) as type 1 if m = n 
(or, equivalently, det{VC,} # 0) or type 2 if m < n (or, equivaletly, det{VCo} = O), where 
m = rank{VC,). The derivation of the MNS equation is more complicated for a type-2 
system. In this section we present the calculation for this case and then comment 
briefly on the calculation for a type-1 system. 

At O ( E )  we have f i i2’= G(2’lcpD/2, f i Y ’ = O  and f i i 2 ’=  p “(2 )  cp , where the vectors &(2’  

and jC2) are given in appendix 3. The condition (2.16) applied to f ib2’  implies that 
i = 1, . . . , n - m. (3.1) C y )  = 0 

The solution to (2.8) is Ub2’ = ~ ~ ‘ ~ ’ I c p l ~ ,  = 0 and Ui2’ = ,L3(2’cp2, where 
i = l , .  . . , n - m  

p”’ = [D0(2w, 2K)]-’fi‘2’, and the A:”, i = 1, . . . , n - m, are arbitrary real functions of 
the slow variables which will be determined at the O(E’ )  level of the hierarchy. 
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At O ( E ~ ’ ~ )  we have f i f ) = O ,  f i i 3 ) = O ,  fii3’= $ 3 ) ( p 3  and 

f i i 3 )  = 2 3 ) a p / a T ,  +p(3)ap/a5, + j ( 3 ) 1 ( p / 2 ( p  

where the vectors -7(3) and c ? ( ~ )  are given in appendix 3, and 

C;j3)= -(A0)vDrj 

pi3’ = ( V,AO - Bo)$,. 

The condition (2.19) applied to f i i 3 )  implies that 

i a Q / a T i  = 41‘P12V 

where 

(3.3) 

(3.6) 

q = iD IS j ( 3 )  I l (VQ.5)  

and we have used (A2.2) and (A2.3) from appendix 2. Note that q involves the as yet 
undetermined quantities Ai2’,  i = 1,. . . , n - rn. The solution to (2.8) is ub:’ = 
Uk3) = 0, U$3) = 8(3)p3 and 

= a(3)ap/a7, + ~ ( ~ ) a ( p / a 5 ,  + y(3)l(p12p (3.7) 
where cS‘~)  = [D0(3w, 3 ~ ) ] - ’ s “ ~ ’ ,  the At3’,  i = 1, , . . . , n - m, are arbitrary real functions 
of the slow variables which will be determined at the O( E ~ ’ ~ )  level of the hierarchy, and 

n - m  
A { 3 ) =  evAj3) i = n - m + 1, . . . , n. 

j = 1  

Using (2.11) and (3.5) we may write pt3) = -id, d(D,)/dK. As p(3)  satisfies d1,/3j3’ = p:3), 
a possible solution for p‘3’ is 

pt3’ = -i d(D,,)/dK. (3.8) 
After considering the implications of (3.6) we shall find that y‘3’ satisfies (3.15) and 
that is not required at this order. It reappears at O ( E ~ ’ ~ )  and we find that it satisfies 
(3.25). 

At O(E’ )  we have 

fir’= ( & ( 4 ’ ( p a ( p * / d T ,  +p(4’(pd(p*/a& +CC) + j‘4)1p14 

where * denotes the complex conjugate, 

pi4) = ( VgAo- B O ) O ~ ~ 2 ) + J ;  

and J ;  and the vectors 6(4) and -7(4) are given in appendix 3. Let us assume a priori 
that a ( p / a ~ ,  = 0; then the condition (2.16) applied to fir’ is satisfied if 

i= 1,. . . , n - m  

i = 1, . . . , n - m. 
(3.9) 

(3.10) 

pj4) = 0 
j ( 4 )  = 0 

I 

On incorporating the expression (3.2) for a(’), we may rearrange (3.9) to give 

(3.11) 4-  gjkGi*) i= 1,. . .  , n - m  
j = 1  k = n - m + l  

n 

+ (-VgAO+BO)ikekj i=l, .. . ,  n - m ; j = l , . . , ,  n - m  
k = n - m + l  
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and 

gij= f (-VgAOfBO)ik(VCO)kil i = l ,  . . . ,  n - m ; j = n - m + l , . P . , n .  
k = n - m + l  

(3.12) 

and so, in view of (3.1), it follows that J ;  is real for i = 1 , .  . . , n - m, and hence that 
the right-hand side of (3.11) is real, as required. 

Let us now return to the O ( E ~ ’ ~ )  problem. In (3.6) q is now completely determined. 
It is precisely the q that appears in the NS equation (1.2) derived on the assumption 
that K is not near K ,  and that q is of O( 1)-see equation (2.35) of Inoue and Matsumoto 
(1974). Here, however, we are considering the marginal state and we assume that 
AK = K - K ,  is of O( E )  and write q = E q l  , where q1 is of O( 1 )  and is given approximately 
by 

(3.13) 

Hence at O ( E ~ ’ ~ )  equation (3.6) becomes 

a Q / a T 1 =  0 (3.14) 

thus justifying our a priori assumption. The right-hand side of (3.6) must be shifted 
to the corresponding non-secular condition at O ( E ~ ’ ~ ) .  This is readily achieved by 
including a term iqlC;‘3’l~12(p in cis) (see (3.21)) and revising (3.3) to 

13~) = p”(3)a(p/a51 + ( j (3) - iq~(3’ )1(p /2q  

Then (3.7) is revised to 

ur3) = ~ ( ~ ’ a p / a 5 ~  + y ( 3 ) I Q 1 2 Q  
where y‘3’ is a particular solution to 

duyj3) = y I  - (3)  - iq&13’. (3.15) 

Continuing now with the O ( E ~ )  problem, and hereafter incorporating (3.11) and 
(3.14) into our results, we have f i :”’=O, 

$4)  - 
1 1  - rIjkDrjAi3’q  

ip = ;(4)QaQ/a51 + ~ ( 4 ) / ~ / 2 ~ 2  

where rl,k and the vector E(4) are given in appendix 3, and 

;j4) = 2( VgAo - Bo)u/3:2’ - i dpj2’/dK. (3.16) 

As fi?) plays no part in the subsequent calculations, it is not given here. The condition 
(2.19) applied to cy’, together with (A2.2), implies that 

r,,kD,Jh ‘,“ = 0. (3.17) 

The solution to (2.8) is 
u‘4’- (4) uy) = ( ~ ( 4 ) ~ a ~ * / a 5 ,  +cc) + y(4)lQ14 1 - 5  Q 

U:”) = tj‘4)(pa(p/a51 + E ( 4 ) l Q 1 2 Q 2  U:”’ = 0 
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p { 4 )  i =  1, .  . . , n - m  

i =  n - m +  1, .  . . , n 

i = l , .  . . , n - m  

(vc0);lp1j4)+ n - m  c eupj4) (3.18) 
j = n - m + l  j = l  

p14) = 

(Ai4 ’  
(3.19) n - m  

(VCO);’7j4)+ C eijAj4’ i = n - m S  1 , .  . . , n 
j = n - m + l  j = 1  

744)  = 

[ ~ ~ ( 2 w ,  2K)]-’S”‘”, E ( ~ )  = [ ~ , ( 2 w ,  ~ K ) I - ’ E ( ~ )  and Q4) is a particular solution to 

d,.5!4) 11 I = rijkD,A (k3). (3.20) 

The pi4’, i = 1,. . . , n - m, are arbitrary complex functions of the slow variables, and 
the A i 4 ) ,  i = 1, .  . . , n - m, are arbitrary real functions of the slow variables. They will 
be determined at the O(e3) level of the hierarchy. By comparing (3.16) with the 
derivative with respect to K of the relation D0(2w, 2 ~ ) p ‘ ”  = pc2’, we find that $4) = 
-iD0(2w, 2 ~ )  dp‘”/dK and hence that 

fj(4) = -i dp‘2)/dK. 

Also, from (3.12), it follows that (VCo)(p(4)-pp(4)*-i da‘2’/dK) = O  and hence that 

PI4’ - pi4)* - i d a  j2’/dK = iai 

where, on using (3.2) and (3.18), 

(p.” - pi4)* - i  dAj2)/dK i =  1, .  . . , n - m  

j = l  

iffi = i = n - m + l , .  . . , n 

and the U!, i = 1, . . . , n - m, are real functions of the slow variables. 
At O ( E ” ~ )  we have 

6:) = [-(Ao)U(a/JT1) + ( VgAo- Bo),(~/a51)lAj3’ 

fii5) = ,-(3)ap/a72+p(3)a~/a52+ 7(5)a2p/a5:+ s””’pa(lp/2)/a5, 

+ {Sllk[DFklj4)+ D r l ~ ~ ’ *  + aj2’A i3’] + sllk/DrlDFkAj3’$. cC}lpl2 

+ ~‘” lp1~a(p/a5~ + [(’)Ipl4p +iq1c?3’lp12p (3.21) 

where S U k ,  Silk/, and the vectors $ 5 ) ,  E ” )  and [ ‘ 5 )  are given in appendix 3, and 

7!5)=i(-VgA0+B0)l, d(Drl)/dK. (3.22) 

If we take the A:3) = 0, i = 1 , . . . , n - m, then 5‘4’ = 0 is a solution to (3.20), and both 
(3.17) and the condition (2.16) applied to fi!j5) are satisfied. Now it follows that Vi” = 0 
and f i b 5 )  = 0, although the latter result is not used subsequently. The condition (2.19) 
applied to iris’ gives the MNS equation (1.3) with q l  given by (3.13) and 

P =[(-VgAo+Bo),Dis d(Drj) /d~I/(vDrs)  
(3.23) 

In appendix 2 we show that p may be identified as 4 d V,/dK. For a purely dispersive 
system p is real. 

q2 = iDlsf?)/(vDr,) q 3  = Q,P/ (~D~~)  q 4 =  ~ , , P / ( ~ D W ) .  
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Although we have obtained the desired MNS equation, q 2 ,  q3 and q4 are not yet 
completely determined since $ 5 ’  and E”’ involve the pi4) and P.!~’*, i = 1,  . . . , n - m, 
and i(5’ involves the Ai4’ ,  i = 1 ,  . . . , n - m. In order to determine the Ai4’ ,  pu!4’ and 
pi4’* we need to go to the next order, and there we find that the only information we 
need about the solution at O ( E ~ ’ ~ )  is U‘,5’. This is given by 

U!’) = a(3)ap/a~2+ ~ ( ~ ) a p / a 5 ~ +  ~(~)a’p/a5:+ ~ “ ) p a ( l p \ ~ ) / a t ,  

(3.24) 
Here pt3’ is given by (3.8), and on using (1 .3)  to eliminate the a p / a ~ ~  terms in (3.21) 
and (3.24) we deduce that the other vector coefficients in (3.24) satisfy the following 
equations: 

d,(7j5)+ipCyj3)) = +i5’+ip&j3) (3.25 a )  
d,(6j5’+ q3aj3)) = $is ’+ q3&i3) (3.25b) 
d,(&j5’+ q4aj3’) = q4&i3’ ( 3 . 2 5 ~ )  
d,([, ( 5 )  -iq2al3’) = [i5’-iq2&i31. (3.25d) 

Combining (3.4) and (3.22), and using (2.11), we find that j!5’+ip&i3’= 
-idij d2(Drj)/dK2. Hence a particular solution to ( 3 . 2 5 ~ )  is 

+ ~ ‘ ~ ) l p I ~ a p / a 5 ~  + [(5’lp14p +iq,a‘3)lp)2p. 

yi5’+ipau3’= - 5  d2(Dri)/dK2. 

At O ( E ~ )  we have, on eliminating a term in a(p/aT2 by using (1.3), 

where 

?j6’ = ( VgAo - ~ ~ ) , p ) ~ ’  + g,  
ij6) = 2( V,A, - ~ ~ ) , , y j ~ )  + h, 

iq2[ (A0),aj2’ + (VA0),,kDr,D$] + j ,  + CC (3.26) 

~~6”iql[(AO),a)2’+(VAO),,D,D~k1 +cc 

h, - h: = i d + j 4 ’ / d ~  +{q4[(A0)&)2’+ (VA,),,D,D$] + k, -cc} 

and g,, j ,  and k, are given in appendix 3. We have not given an expression for h, itself; 
it is sufficient here to note that it involves the pj4’ and pj4’* but not the Aj4’. From 
(3.1) and (3.9) we already have d2Gt2’/dK2 = 0 and $j4’  = 0 for i = 1 , .  . . , n - m, so the 
condition (2.16) applied to fih6) requires that 

I i =  I , . .  . , n - m  (3.27) ~ ( 6 )  = 0 

$j6’ = 0 i = l , .  . . , n - m  (3.28) 

E_y = 0 i = l , .  . . , n - m  (3.29) 
p = 0 (3.30) i = 1,  . . . , n - m. 

On incorporating the expression (3.18) for p!”,  we may rearrange (3.27) to give 

i = 1,  . . . , n - m. 
j = l  k = n - m + l  
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Now q 3 ,  q4 and h, are completely determined. On incorporating the expression (3.19) 
for yr4), we may rearrange (3.28) to give 

A:4) = 'im ( F ) ; ' (  &hJ - gJkTi4)) i = l ,  . . . ,  n - m .  (3.31) 

i = 1, .  . . , n - m, to be real 

J = l  k = n - m + l  

Now q2 and E " ( 6 )  are completely determined. For the 
as required, h, must be real in (3.31) and hence we require 

h, - h: = 0 i =  1 , .  . . , n - m  (3.32) 

where h, -/I: is given by (3.26). Note that the term i d T j 4 ' / d ~  in (3.26) is already zero 
for i = 1, . . . , n - m, by virtue of (3.10). For a purely dispersive system it is expected 
that q l ,  q2,  q3 and q4 are real, as in Kakutani and Michihiro (1983) and Parkes 
(1987a, b). In this case (3.30) reduces to 

( V A , ) , , , ( D , D ~ k - D * , D , , )  = (3.33) 

j ,  + j ?  = 0 (3.34) 

k, - k: 0. (3.35) 

and then (3.29) and (3.32) become, respectively, 

We conclude that for a type-2 system (i.e. for m < n ) ,  the MNS equation is the 
governing equation for cp near marginal instability provided the conditions (3.1), (3.10) 
and (3.33)-(3.35) are satisfied. All these conditions arise essentially from the condition 
(2.16). In turn this condition is relevant only when m < n. It follows that, for a type-1 
system (i.e. for m = n), the derivation of the MNS equation proceeds straightforwardly 
without the introduction of extra constraints on A, B and C. 

4. Concluding remarks 

Inoue and Matsumoto (1974) investigated the slow modulations of a weakly non-linear 
quasimonochromatic wave solution to the system (1.1) away from marginal instability. 
For a type-1 system the modulations are governed by the NS equation. Type-2 systems 
divide into types 2A and 2B. For a type-2A system the condition (3.1) holds and the 
NS equation is obtained. For a type-2B system the condition (3.1) does not hold and 
a single governing equation for the modulations cannot be obtained. 

In this paper we have considered the behaviour of modulations near marginal 
instability. For a type-1 system the modulations are governed by the MNS equation 
and not the NS equation. The same is true for a type-2A system provided the extra 
conditions (3.10) and (3.33)-(3.35) hold. (The system describing ion acoustic wave 
propagation in a plasma, and considered by Parkes (1987b), falls into this category.) 
If any of these conditions or (3.1) do not hold, then a single governing equation for 
the modulations cannot be obtained. 
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Appendix 1 

The notation used here is explained by example: 

(VVAo),,, = d 2 a , / a U k d U ,  

evaluated at U = U''', and [(VVA,) U'"U'2' 1, = (VVAo)ykl~(kl)~j2)  (with summation 
convention). Similarly 

(vvc,),, = a2c,/au, auk 

evaluated at U = U''), and [(VVC,) U'" U'2'] ,  (VVCO) , ,k~~1)~(k2)  (with summation 
convention). Using this notation the Taylor series for A( U )  about U = U''' may be 
written 

5 

A =  2 E ~ " A ~ + O ( E ~ )  
i = O  

where 
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Appendix 2. Expressions for V, and dV,/dtc 

From (2.11) it follows that Di,T d(d,Drj)/dK = O .  On using (2.12) we obtain 
DrjDi, d(dij)/dK = 0 and hence that 

D, d(d,)/dK = 0 (A2.1) 

where we have used Jacobi’s formula 

D r j D i s  = DijDr.s 

and we have assumed that D,, # 0. A rearrangement of (A2.1) gives 

(A2.2) 

vg = (&),Qj/ v (A2.3) 

where v = (A,,)&. 
By differentiating (A2.1) with respect to K and rearranging we obtain 

Also, from (3.23), we have 

Hence, in order to show that p =$ dVg/dK, we need to prove that 

d d 1 d  d 
dK dK 2dK dK 
- (d i j ) - (Dr j )Di s  =- - ( d i j ) - ( D i j ) D r , .  (A2.4) 

Inoue and Matsumoto (1974, appendices D and E) proved (A2.4) using a complicated 
procedure involving determinants D,,kl that are related to the matrix obtained from 
( d , )  be deleting the ith and kth rows and j th  and Ith columns. Here we present a 
simpler and shorter proof. 

Denoting the left-hand side of (A2.4) by H, and using the derivatives of (2.11) and 
(2.12) with respect to K, we have 

d d d d 
dK dK dK dK 

H =  - d , - ( D , ) - ( D i s ) = - ( d , j ) - ( D i s ) D r j .  

Hence we may write 

1 d  d 
2dK dK 

H = - - ( d , )  - ( DrjDis). 

The desired result (A2.4) follows on using (A2.2) and then (A2.1). 

Appendix 3 

The vector coefficients that are not given explicitly in 0 3 are stated here. First we 
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